Role of contact electrification and electrostatic interactions in gecko adhesion

Author:

Izadi Hadi1,Stewart Katherine M. E.1,Penlidis Alexander1

Affiliation:

1. Department of Chemical Engineering, Institute for Polymer Research (IPR), University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Abstract

Geckos, which are capable of walking on walls and hanging from ceilings with the help of micro-/nano-scale hierarchical fibrils (setae) on their toe pads, have become the main prototype in the design and fabrication of fibrillar dry adhesives. As the unique fibrillar feature of the toe pads of geckos allows them to develop an intimate contact with the substrate the animal is walking on or clinging to, it is expected that the toe setae exchange significant numbers of electric charges with the contacted substrate via the contact electrification (CE) phenomenon. Even so, the possibility of the occurrence of CE and the contribution of the resulting electrostatic interactions to the dry adhesion of geckos have been overlooked for several decades. In this study, by measuring the magnitude of the electric charges, together with the adhesion forces, that gecko foot pads develop in contact with different materials, we have clarified for the first time that CE does contribute effectively to gecko adhesion. More importantly, we have demonstrated that it is the CE-driven electrostatic interactions which dictate the strength of gecko adhesion, and not the van der Waals or capillary forces which are conventionally considered as the main source of gecko adhesion.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3