Sensitivity of collective outcomes identifies pivotal components

Author:

Lee Edward D.12ORCID,Katz Daniel M.3,Bommarito Michael J.3,Ginsparg Paul H.1

Affiliation:

1. Department of Physics, 142 Sciences Drive, Cornell University, Ithaca, NY 14853, USA

2. Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

3. Chicago-Kent College of Law, Illinois Institute of Technology, 565 West Adams, Chicago, IL 60661, USA

Abstract

A social system is susceptible to perturbation when its collective properties depend sensitively on a few pivotal components. Using the information geometry of minimal models from statistical physics, we develop an approach to identify pivotal components to which coarse-grained, or aggregate, properties are sensitive. As an example, we introduce our approach on a reduced toy model with a median voter who always votes in the majority. The sensitivity of majority–minority divisions to changing voter behaviour pinpoints the unique role of the median. More generally, the sensitivity identifies pivotal components that precisely determine collective outcomes generated by a complex network of interactions. Using perturbations to target pivotal components in the models, we analyse datasets from political voting, finance and Twitter. Across these systems, we find remarkable variety, from systems dominated by a median-like component to those whose components behave more equally. In the context of political institutions such as courts or legislatures, our methodology can help describe how changes in voters map to new collective voting outcomes. For economic indices, differing system response reflects varying fiscal conditions across time. Thus, our information-geometric approach provides a principled, quantitative framework that may help assess the robustness of collective outcomes to targeted perturbation and compare social institutions, or even biological networks, with one another and across time.

Funder

Dirksen Congressional Center

Santa Fe Institute

National Science Foundation

Illinois Institute of Technology

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Valence and interactions in judicial voting;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-02-26

2. Decision-Oriented Two-Parameter Fisher Information Sensitivity Using Symplectic Decomposition;Technometrics;2023-06-27

3. Discovering sparse control strategies in neural activity;PLOS Computational Biology;2022-05-27

4. An Evolutionary View of the U.S. Supreme Court;Mathematical and Computational Applications;2021-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3