Connexin membrane materials as potent inhibitors of breast cancer cell migration

Author:

Ferrati Silvia1ORCID,Gadok Avinash K.2,Brunaugh Ashlee D.1,Zhao Chi2,Heersema Lara A.2,Smyth Hugh D. C.1,Stachowiak Jeanne C.2

Affiliation:

1. Division of Pharmaceutics, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA

2. Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX 78712, USA

Abstract

Gap junction (GJ) channels facilitate cell–cell communication through the exchange of chemical and mechanical signals, ensuring proper tissue development and homeostasis. The complex, disease stage-dependent role of connexins in breast cancer progression has been extensively studied over the past two decades. In the early stages of breast cancer, substantial evidence supports the role of GJ channels, formed by connexins at the interfaces between neighbouring cells, as suppressors of cell migration and proliferation. These findings suggest that materials that reintroduce connexins into the tumour cell environment have the potential to inhibit cell migration. Here, we report that exposure of highly metastatic MDA-MB-231 breast tumour cells to connexin-rich biovesicle materials potently suppresses cell migration. Specifically, these biovesicles, which can form GJ interfaces with cells, were extracted from the plasma membrane of donor cells engineered to express a high concentration of functional connexin 43 channels. These connexin-rich membrane materials dramatically reduced cell migration in both a transwell migration assay and a scratch closure assay. Collectively, these results suggest that using membrane materials to reintroduce connexins into the tumour cell environment provides a novel approach for combating cell migration and invasion.

Funder

National Science Foundation

Texas 4000 Foundation

NSF graduate research fellowship program

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3