Assessing the airborne survival of bacteria in populations of aerosol droplets with a novel technology

Author:

Fernandez Mara Otero1,Thomas Richard J.2,Garton Natalie J.3,Hudson Andrew4,Haddrell Allen1,Reid Jonathan P.1ORCID

Affiliation:

1. School of Chemistry, University of Bristol, Bristol BS8 1TS, UK

2. Defence Science Technology Laboratory (DSTL), Porton Down, Salisbury SP4 0JQ, UK

3. Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 7RH, UK

4. Department of Chemistry, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, UK

Abstract

The airborne transmission of infection relies on the ability of pathogens to survive aerosol transport as they transit between hosts. Understanding the parameters that determine the survival of airborne microorganisms is critical to mitigating the impact of disease outbreaks. Conventional techniques for investigating bioaerosol longevity in vitro have systemic limitations that prevent the accurate representation of conditions that these particles would experience in the natural environment. Here, we report a new approach that enables the robust study of bioaerosol survival as a function of relevant environmental conditions. The methodology uses droplet-on-demand technology for the generation of bioaerosol droplets (1 to greater than 100 per trial) with tailored chemical and biological composition. These arrays of droplets are captured in an electrodynamic trap and levitated within a controlled environmental chamber. Droplets are then deposited on a substrate after a desired levitation period (less than 5 s to greater than 24 h). The response of bacteria to aerosolization can subsequently be determined by counting colony forming units, 24 h after deposition. In a first study, droplets formed from a suspension of Escherichia coli MRE162 cells (10 8 ml −1 ) with initial radii of 27.8 ± 0.08 µm were created and levitated for extended periods of time at 30% relative humidity. The time-dependence of the survival rate was measured over a time period extending to 1 h. We demonstrate that this approach can enable direct studies at the interface between aerobiology, atmospheric chemistry and aerosol physics to identify the factors that may affect the survival of airborne pathogens with the aim of developing infection control strategies for public health and biodefence applications.

Funder

Natural Environment Research Council

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3