Preen gland microbiota covary with major histocompatibility complex genotype in a songbird

Author:

Grieves L. A.1ORCID,Gloor G. B.2,Bernards M. A.1,MacDougall-Shackleton E. A.1ORCID

Affiliation:

1. Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7

2. Department of Biochemistry, University of Western Ontario, London, ON, Canada N6A 5C1

Abstract

Pathogen-mediated selection at the major histocompatibility complex (MHC) is thought to promote MHC-based mate choice in vertebrates. Mounting evidence implicates odour in conveying MHC genotype, but the underlying mechanisms remain uncertain. MHC effects on odour may be mediated by odour-producing symbiotic microbes whose community structure is shaped by MHC genotype. In birds, preen oil is a primary source of body odour and similarity at MHC predicts similarity in preen oil composition. Hypothesizing that this relationship is mediated by symbiotic microbes, we characterized MHC genotype, preen gland microbial communities and preen oil chemistry of song sparrows ( Melospiza melodia ). Consistent with the microbial mediation hypothesis, pairwise similarity at MHC predicted similarity in preen gland microbiota. Counter to this hypothesis, overall microbial similarity did not predict chemical similarity of preen oil. However, permutation testing identified a maximally predictive set of microbial taxa that best reflect MHC genotype, and another set of taxa that best predict preen oil chemical composition. The relative strengths of relationships between MHC and microbes, microbes and preen oil, and MHC and preen oil suggest that MHC may affect host odour both directly and indirectly. Thus, birds may assess MHC genotypes based on both host-associated and microbially mediated odours.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3