Properties of translation operator and the solution of the eigenvalue and boundary value problems of arbitrary space–time periodic metamaterials

Author:

Elnaggar Sameh Y.1ORCID,Milford Gregory N.2

Affiliation:

1. Department of Electrical and Computer Engineering, Royal Military College of Canada, Kingston, Ontario, Canada

2. School of Engineering and Information Technology, University of New South Wales, Canberra, Australia

Abstract

There is a recent interest in understanding and exploiting the intriguing properties of space–time metamaterials. In the current manuscript, the time periodic circuit theory is exploited to introduce an appropriate translation operator that fully describes arbitrary space–time metamaterials. It is shown that the underlying mathematical machinery is identical to the one used in the analysis of linear time invariant periodic structures, where time and space eigen-decompositions are successively employed. We prove some useful properties the translation operator exhibits. The wave propagation inside the space time periodic metamaterial and the terminal characteristics can be rigorously determined via the expansion in the operators eigenvectors (space–time Bloch waves). Two examples are provided that demonstrate how to apply the framework. In the first, a space time modulated composite right left handed transmission line is studied and results are verified via time domain computations. Furthermore, we apply the theory to explain the non-reciprocal behaviour observed on a nonlinear transmission line manufactured in our lab. Bloch-waves are computed from the extracted circuit parameters. Results predicted using the developed machinery agree with both measurements and time domain analysis. Although the analysis was carried out for electric circuits, the approach is valid for different domains such as acoustic and elastic media.

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3