Research on homogeneous nucleation and microstructure evolution of aluminium alloy melt

Author:

Zhan Lan1ORCID,Wu Mingzhong1,Qin Xiangge1

Affiliation:

1. School of Materials Science and Engineering, Jiamusi University, 258th Xuefu Street, Xiangyang District, HeiLongJiang 154007, People's Republic of China

Abstract

In this paper, based on the embedded atom method (EAM) potential, molecular dynamics simulations of the solidification process of Al–4 at.%Cu alloy is carried out. The Al–Cu alloy melt is placed at different temperatures for isothermal solidification, and each stage of the entire solidification process is tracked, including homogeneous nucleation, nucleus growth, grain coarsening and microstructure evolution. In the nucleation stage, the transition from high temperature to low temperature manifests a change from spontaneous nucleation mode to divergent nucleation mode. The critical nucleation temperature of the Al–Cu alloy is determined to be about 0.42 T m ( T m is the melting point of Al–4 at.%Cu) by calculating the nucleation rate and the crystal nucleus density. In the nucleus growth stage, two ways of growing up are observed, that is, a large crystal nucleus will absorb a smaller heterogeneous crystal nucleus, and two very close crystal nuclei will merge. In the microstructure evolution of the isothermally solidified Al–Cu alloy, it is emerged that the interior of all nanocrystalline grains are long-period stacking structure composed of face centred cubic (FCC) and hexagonal close-packed (HCP). These details provide important information for the production of Al–Cu binary alloy nano-polycrystalline products.

Funder

University Nursing Program for Young Scholars with Creative Talents

Publisher

The Royal Society

Subject

Multidisciplinary

Reference50 articles.

1. On the overburning of LY12 aluminum alloy;Li XC;Phys. Test. Chem. Anal.,1982

2. Comparison of two different nozzles for laser beam welding of AA5083 aluminium alloy

3. Correlation between the structure in the liquid state and the structure in the solid state in the Al–Al2Cu eutectic alloy

4. Characterization of an Al–Cu cast alloy

5. Experimental characterization of the ultrastructure of aluminum alloy for aviation;Yang MJ;J. Aeronaut. Mater.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3