A mechanism for localized dynamics-driven activation in Bruton's tyrosine kinase

Author:

Qiu Simei12,Liu Yunfeng1,Li Quhuan12ORCID

Affiliation:

1. Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou People's Republic of China

2. Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou People's Republic of China

Abstract

Bruton's tyrosine kinase (BTK) plays a vital role in mature B-cell proliferation, development and function. Its inhibitors have gradually been applied for the treatment of many B-cell malignancies. However, because of treatment-associated drug resistance or low efficacy, it is urgent to develop new inhibitors and/or improve the efficacy of current inhibitors, where finding the intrinsic activation mechanism becomes the key to solve this problem. Here, we used BTK T474M mutation as a resistance model for inhibitors to study the mechanism of BTK activation and drug resistance by free molecular dynamics simulations. The results showed that the increase of kinase activity of T474M mutation is coming from the conformation change of the activation ring and ATP binding sites located in BTK N-terminus region. Specifically, the Thr 474 mutation changed the structure of A-loop and stabilized the binding site of ATP, thus promoting the catalytic ability in the kinase domain. This localized dynamics-driven activation mechanism and resistance mechanism of BTK may provide new ideas for drug development in B-cell malignancies.

Funder

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3