1 H/ 13 C chemical shift calculations for biaryls: DFT approaches to geometry optimization

Author:

Nguyen Thien T.12ORCID

Affiliation:

1. Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam

2. Faculty of Pharmacy, College of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Vietnam

Abstract

Twelve common density functional methods and seven basis sets for geometry optimization were evaluated on the accuracy of 1 H/ 13 C NMR chemical shift calculations for biaryls. For these functionals, 1 H shifts calculations for gas phase optimized geometries were significantly less accurate than those for in-solution optimized structures, while 13 C results were not strongly influenced by geometry optimization methods and solvent effects. B3LYP, B3PW91, mPW1PW91 and ω B97XD were the best-performing functionals with lowest errors; among seven basis sets, DGDZVP2 and 6-31G(d,p) outperformed the others. The combination of these functionals and basis sets resulted in high accuracy with CMAE min = 0.0327 ppm (0.76%) and 0.888 ppm (0.58%) for 1 H and 13 C, respectively. The selected functionals and basis set were validated when consistently producing optimized structures with high accuracy results for 1 H and 13 C chemical shift calculations of two other biaryls. This study highly recommends the IEFPCM/B3LYP, B3PW91, mPW1PW91 or ω B97XD/DGDZVP2 or 6-31G(d,p) level of theory for the geometry optimization step, especially the solvent incorporation, which would lead to high accuracy 1 H/ 13 C calculation. This work would assist in the fully structural assignments of biaryls and provide insights into in-solution biaryl conformations.

Funder

International Foundation for Science

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3