Uneven substrates constrain walking speed in ants through modulation of stride frequency more than stride length

Author:

Clifton G. T.1ORCID,Holway D.2,Gravish N.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Behavior and Evolution, University of California, San Diego, USA

2. Division of Biological Science, Section of Ecology, Behavior and Evolution, University of California, San Diego, USA

Abstract

Natural terrain is rarely flat. Substrate irregularities challenge walking animals to maintain stability, yet we lack quantitative assessments of walking performance and limb kinematics on naturally uneven ground. We measured how continually uneven 3D-printed substrates influence walking performance of Argentine ants by measuring walking speeds of workers from laboratory colonies and by testing colony-wide substrate preference in field experiments. Tracking limb motion in over 8000 videos, we used statistical models that associate walking speed with limb kinematic parameters to compare movement over flat versus uneven ground of controlled dimensions. We found that uneven substrates reduced preferred and peak walking speeds by up to 42% and that ants actively avoided uneven terrain in the field. Observed speed reductions were modulated primarily by shifts in stride frequency instead of stride length (flat R 2 : 0.91 versus 0.50), a pattern consistent across flat and uneven substrates. Mixed effect modelling revealed that walking speeds on uneven substrates were accurately predicted based on flat walking data for over 89% of strides. Those strides that were not well modelled primarily involved limb perturbations, including missteps, active foot repositioning and slipping. Together these findings relate kinematic mechanisms underlying walking performance on uneven terrain to ecologically relevant measures under field conditions.

Funder

Army Research Office

University of California, San Diego

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3