Loss of runx1 function results in B cell immunodeficiency but not T cell in adult zebrafish

Author:

Chi Yali12ORCID,Huang Zhibin3ORCID,Chen Qi1ORCID,Xiong Xiaojie1ORCID,Chen Kemin1ORCID,Xu Jin3ORCID,Zhang Yiyue1ORCID,Zhang Wenqing13ORCID

Affiliation:

1. Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China

2. Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China

3. Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China

Abstract

Transcription factor RUNX1 holds an integral role in multiple-lineage haematopoiesis and is implicated as a cofactor in V(D)J rearrangements during lymphocyte development. Runx1 deficiencies resulted in immaturity and reduction of lymphocytes in mice. In this study, we found that runx1 W84X/W84X mutation led to the reduction and disordering of B cells, as well as the failure of V(D)J rearrangements in B cells but not T cells, resulting in antibody-inadequate-mediated immunodeficiency in adult zebrafish. By contrast, T cell development was not affected. The decreased number of B cells mainly results from excessive apoptosis in immature B cells. Disrupted B cell development results in runx1 W84X/W84X mutants displaying a similar phenotype to common variable immunodeficiency—a primary immunodeficiency disease primarily characterized by frequent susceptibility to infection and deficient immune response, with marked reduction of antibody production of IgG, IgA and/or IgM. Our studies demonstrated an evolutionarily conserved function of runx1 in maturation and differentiation of B cells in adult zebrafish, which will serve as a valuable model for the study of immune deficiency diseases and their treatments.

Funder

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3