Ontogenetic niche shifts in dinosaurs influenced size, diversity and extinction in terrestrial vertebrates

Author:

Codron Daryl1234,Carbone Chris5,Müller Dennis W. H.1,Clauss Marcus1

Affiliation:

1. Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zürich, Switzerland

2. Florisbad Quaternary Research, National Museum, PO Box 266, Bloemfontein 9301, South Africa

3. School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa

4. Department of Anthropology, University of Colorado at Boulder, Boulder, CO 80309, USA

5. Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK

Abstract

Given the physiological limits to egg size, large-bodied non-avian dinosaurs experienced some of the most extreme shifts in size during postnatal ontogeny found in terrestrial vertebrate systems. In contrast, mammals—the other dominant vertebrate group since the Mesozoic—have less complex ontogenies. Here, we develop a model that quantifies the impact of size-specific interspecies competition on abundances of differently sized dinosaurs and mammals, taking into account the extended niche breadth realized during ontogeny among large oviparous species. Our model predicts low diversity at intermediate size classes (between approx. 1 and 1000 kg), consistent with observed diversity distributions of dinosaurs, and of Mesozoic land vertebrates in general. It also provides a mechanism—based on an understanding of different ecological and evolutionary constraints across vertebrate groups—that explains how mammals and birds, but not dinosaurs, were able to persist beyond the Cretaceous–Tertiary (K–T) boundary, and how post-K–T mammals were able to diversify into larger size categories.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3