Nocturnal torpor by superb fairy-wrens: a key mechanism for reducing winter daily energy expenditure

Author:

Romano Alex B.1,Hunt Anthony2,Welbergen Justin A.1,Turbill Christopher1ORCID

Affiliation:

1. Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia

2. Australian Bird Study Association, 16 Alderson Ave, North Rocks, New South Wales 2151, Australia

Abstract

Many passerine birds are small and require a high mass-specific rate of resting energy expenditure, especially in the cold. The energetics of thermoregulation is, therefore, an important aspect of their ecology, yet few studies have quantified thermoregulatory patterns in wild passerines. We used miniature telemetry to record the skin temperature ( T skin ) of free-living superb fairy-wrens ( Malurus cyaneus , 8.6 g; n = 6 birds over N = 7–22 days) and determine the importance of controlled reductions in body temperature during resting to their winter energy budgets. Fairy-wrens routinely exhibited large daily fluctuations in T skin between maxima of 41.9 ± 0.6°C and minima of 30.4 ± 0.7°C, with overall individual minima of 27.4 ± 1.1°C (maximum daily range: 14.7 ± 0.9°C). These results provide strong evidence of nocturnal torpor in this small passerine, which we calculated to provide a 42% reduction in resting metabolic rate at a T a of 5°C compared to active-phase T skin . A capacity for energy-saving torpor has important consequences for understanding the behaviour and life-history ecology of superb fairy-wrens. Moreover, our novel field data suggest that torpor could be more widespread and important than previously thought within passerines, the most diverse order of birds.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3