The ‘filtering’ metaphor revisited: competition and environment jointly structure invasibility and coexistence

Author:

Germain Rachel M.1ORCID,Mayfield Margaret M.2,Gilbert Benjamin3ORCID

Affiliation:

1. Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4

2. School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia

3. Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2

Abstract

‘Filtering’, or the reduction in species diversity that occurs because not all species can persist in all locations, is thought to unfold hierarchically, controlled by the environment at large scales and competition at small scales. However, the ecological effects of competition and the environment are not independent, and observational approaches preclude investigation into their interplay. We use a demographic approach with 30 plant species to experimentally test: (i) the effect of competition on species persistence in two soil moisture environments, and (ii) the effect of environmental conditions on mechanisms underlying competitive coexistence. We find that competitors cause differential species persistence across environments even when effects are lacking in the absence of competition, and that the traits which determine persistence depend on the competitive environment. If our study had been observational and trait-based, we would have erroneously concluded that the environment filters species with low biomass, shallow roots and small seeds. Changing environmental conditions generated idiosyncratic effects on coexistence outcomes, increasing competitive exclusion of some species while promoting coexistence of others. Our results highlight the importance of considering environmental filtering in the light of, rather than in isolation from, competition, and challenge community assembly models and approaches to projecting future species distributions.

Funder

Killam Trusts

Natural Sciences and Engineering Research Council of Canada

University of British Columbia

Connaught Fund

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3