Bayesian and parsimony approaches reconstruct informative trees from simulated morphological datasets

Author:

Smith Martin R.1ORCID

Affiliation:

1. Department of Earth Sciences, Lower Mount Joy, Durham University, Durham DH1 3LE, UK

Abstract

Phylogenetic analysis aims to establish the true relationships between taxa. Different analytical methods, however, can reach different conclusions. In order to establish which approach best reconstructs true relationships, previous studies have simulated datasets from known tree topologies, and identified the method that reconstructs the generative tree most accurately. On this basis, researchers have argued that morphological datasets should be analysed by Bayesian approaches, which employ an explicit probabilistic model of evolution, rather than parsimony methods—with implied weights parsimony sometimes identified as particularly inaccurate. Accuracy alone, however, is an inadequate measure of a tree's utility: a fully unresolved tree is perfectly accurate, yet contains no phylogenetic information. The highly resolved trees recovered by implied weights parsimony in fact contain as much useful information as the more accurate, but less resolved, trees recovered by Bayesian methods. By collapsing poorly supported groups, this superior resolution can be traded for accuracy, resulting in trees as accurate as those obtained by a Bayesian approach. By contrast, equally weighted parsimony analysis produces trees that are less resolved and less accurate, leading to less reliable evolutionary conclusions.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3