Downsizing a giant: re-evaluating Dreadnoughtus body mass

Author:

Bates Karl T.1,Falkingham Peter L.2ORCID,Macaulay Sophie1,Brassey Charlotte3,Maidment Susannah C. R.4

Affiliation:

1. Department of Musculoskeletal Biology, University of Liverpool, Duncan Building, Daulby Street, Liverpool L69 3GE, UK

2. School of Natural Sciences and Psychology, Liverpool John Moores University, James Parsons Building, Bryon Street, Liverpool L3 3AF, UK

3. Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK

4. Department of Earth Science and Engineering, Imperial College, South Kensington, London SW7 2AZ, UK

Abstract

Estimates of body mass often represent the founding assumption on which biomechanical and macroevolutionary hypotheses are based. Recently, a scaling equation was applied to a newly discovered titanosaurian sauropod dinosaur ( Dreadnoughtus ), yielding a 59 300 kg body mass estimate for this animal. Herein, we use a modelling approach to examine the plausibility of this mass estimate for Dreadnoughtus . We find that 59 300 kg for Dreadnoughtus is highly implausible and demonstrate that masses above 40 000 kg require high body densities and expansions of soft tissue volume outside the skeleton several times greater than found in living quadrupedal mammals. Similar results from a small sample of other archosaurs suggests that lower-end mass estimates derived from scaling equations are most plausible for Dreadnoughtus , based on existing volumetric and density data from extant animals. Although volumetric models appear to more tightly constrain dinosaur body mass, there remains a clear need to further support these models with more exhaustive data from living animals. The relative and absolute discrepancies in mass predictions between volumetric models and scaling equations also indicate a need to systematically compare predictions across a wide size and taxonomic range to better inform studies of dinosaur body size.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3