Lineage tracing of the bivalve shell field with special interest in the descendants of the 2d blastomere

Author:

Mohri Masakuni,Hashimoto Naoki,Wada HiroshiORCID

Abstract

By evolving bilaterally separated shell plates, bivalves acquired a unique body plan in which their soft tissues are completely protected by hard shell plates. In this unique body plan, mobility between the separated shell plates is provided by novel structures such as a ligament and adductor muscles. As a first step towards understanding how the bivalve body plan was established, we investigated the development of the separated shell plates and ligament. Over 100 years ago, it was hypothesized that the development of separated shell plates is tightly linked with the unique cell cleavage (division) pattern of bivalves during development, wherein each bilateral daughter cell of the 2d descendant 2d 1121 develops into one of the bilateral shell fields. In this study, we tested this hypothesis by tracing the cell lineages of the Japanese purple mussel Septifer virgatus . Although the shell fields were found to be exclusively derived from the bilateral descendant cells of 2d: 2d 11211 and 2d 11212 , the descendants of these cells were not restricted to shell fields alone, nor were they confined to the left or right side of the shell field based on their lineage. Our study demonstrated that ligament cells are also derived from 2d 11211 and 2d 11212 , indicating that the ligament cells emerged as a subpopulation of shell field cells. This also suggests that the establishment of the novel developmental system for the ligament cells was critical for the evolution of the unique body plan of bivalves.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3