Mates but not sexes differ in migratory niche in a monogamous penguin species

Author:

Thiebot Jean-Baptiste1,Bost Charles-André2,Dehnhard Nina3,Demongin Laurent3,Eens Marcel3,Lepoint Gilles4,Cherel Yves2,Poisbleau Maud3

Affiliation:

1. National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, 190-8518 Tokyo, Japan

2. Centre d'Études Biologiques de Chizé, UMR 7372 du CNRS-Université de La Rochelle, 79360 Villiers-en-Bois, France

3. Department Biology-Ethology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Antwerp (Wilrijk), Belgium

4. MARE Center, Laboratory of Oceanology, University of Liège, 15 allée du 6 août, 4000 Liège, Belgium

Abstract

Strong pair bonds generally increase fitness in monogamous organisms, but may also underlie the risk of hampering it when re-pairing fails after the winter season. We investigated whether partners would either maintain contact or offset this risk by exploiting sex-specific favourable niches during winter in a migratory monogamous seabird, the southern rockhopper penguin Eudyptes chrysocome . Using light-based geolocation, we show that although the spatial distribution of both sexes largely overlapped, pair-wise mates were located on average 595 ± 260 km (and up to 2500 km) apart during winter. Stable isotope data also indicated a marked overlap between sex-specific isotopic niches ( δ 13 C and δ 15 N values) but a segregation of the feeding habitats ( δ 13 C values) within pairs. Importantly, the tracked females remained longer (12 days) at sea than males, but all re-mated with their previous partners after winter. Our study provides multiple evidence that migratory species may well demonstrate pair-wise segregation even in the absence of sex-specific winter niches (spatial and isotopic). We suggest that dispersive migration patterns with sex-biased timings may be a sufficient proximal cause for generating such a situation in migratory animals.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3