Deposition of pathogenic Mycoplasma gallisepticum onto bird feeders: host pathology is more important than temperature-driven increases in food intake

Author:

Adelman James S.1,Carter Amanda W.23,Hopkins William A.2,Hawley Dana M.1

Affiliation:

1. Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA

2. Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA

3. School of Biological Sciences, Illinois State University, Normal, IL 61790, USA

Abstract

Although ambient temperature has diverse effects on disease dynamics, few studies have examined how temperature alters pathogen transmission by changing host physiology or behaviour. Here, we test whether reducing ambient temperature alters host foraging, pathology and the potential for fomite transmission of the bacterial pathogen Mycoplasma gallisepticum (MG), which causes seasonal outbreaks of severe conjunctivitis in house finches ( Haemorhous mexicanus ). We housed finches at temperatures within or below the thermoneutral zone to manipulate food intake by altering energetic requirements of thermoregulation. We predicted that pathogen deposition on bird feeders would increase with temperature-driven increases in food intake and with conjunctival pathology. As expected, housing birds below the thermoneutral zone increased food consumption. Despite this difference, pathogen deposition on feeders did not vary across temperature treatments. However, pathogen deposition increased with conjunctival pathology, independently of temperature and pathogen load, suggesting that MG could enhance its transmission by increasing virulence. Our results suggest that in this system, host physiological responses are more important for transmission potential than temperature-dependent alterations in feeding. Understanding such behavioural and physiological contributions to disease transmission is critical to linking individual responses to climate with population-level disease dynamics.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3