Cooperative bird differentiates between the calls of different individuals, even when vocalizations were from completely unfamiliar individuals

Author:

McDonald Paul G.12

Affiliation:

1. Behavioural and Physiological Ecology Research Centre, Zoology, University of New England, Armidale 2351, Australia

2. School of Biological Sciences, Macquarie University, Sydney 2109, Australia

Abstract

Hypotheses proposed to explain the evolution of cooperative behaviour typically require differentiation between either groups of conspecifics (e.g . kin/non-kin) or, more typically, individuals (e.g. reciprocal altruism). Despite this, the mechanisms that facilitate individual or class recognition have rarely been explored in cooperative species. This study examines the individual differentiation abilities of noisy miners ( Manorina melanocephala ), a species with one of the most complex avian societies known. Miners permanently occupy colonies numbering into hundreds of individuals. Within these colonies, cooperative coalitions form on a fission–fusion basis across numerous contexts, from social foraging through to mobbing predators. Birds often use individually distinctive ‘chur’ calls to recruit others to a caller's location, facilitating coalition formation. I used the habituation–discrimination paradigm to test the ability of miners to differentiate between the chur calls of two individuals that were both either: (i) familiar, or (ii) unfamiliar to the focal subject. This technique had not, to my knowledge, been used to assess vocalization differentiation in cooperative birds previously, but here demonstrated that miners could correctly use the spectral features of signals to differentiate between the vocalizations of different individuals, regardless of their familiarity. By attending to individual differences in recruitment calls, miners have a communication system that is capable of accommodating even the most complex cooperative hypotheses based upon acoustic information.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3