A thermodynamical investigation of the system benzene-diphenyl

Author:

Abstract

The partial molar heat content, entropy and free energy of benzene in solutions of diphenyl in benzene have been determined by measurement of the partial pressures of benzene over the solu-­ tions. The whole composition range has been covered (as far as the solubility of diphenyl will allow), at temperatures from 30 to 80° C. A check on the accuracy of the experimental method has been made by measuring the vapour pressure of pure benzene over this temperature range, and good agreement has been found with recent values reported in the literature. The calculation of the thermodynamic functions from the vapour pressures requires a knowledge of the compressibility of benzene vapour. An experimental method has been devised for determining the gas imperfections of vapours, and using this the second and third virial coefficients of benzene vapour at various temperatures have been obtained. The variation of the thermodynamic functions of benzene with the composition of the solutions has been compared with that to be expected on the basis of recent statistical theories. It is found that whereas the non-ideal partial molar free energy can be accounted for almost exactly by the theo­ retical expression, the separate heat contents and entropies show some deviations. It is suggested that these deviations arise from slight changes in molecular packing as the composition is varied. The activities of benzene and diphenyl in saturated solutions at 30 to 60° C have been obtained from the vapour pressures of saturated solutions at these temperatures. These lead to values for the latent heat of fusion of diphenyl in agreement with the calorimetric value. The yapour pressure of saturated solutions is discussed.

Publisher

The Royal Society

Subject

General Engineering

Reference8 articles.

1. Bronsted J. N. 1937 Physical chemistry pp. 123-125. London: Heinemann.

2. Z. phys;Ejkman J. F.;Chem.,1889

3. Z. phys;Eucken A.;Chem.,1929

4. Findlay A. & Campbell A. H. 1938 The phase rule 8th ed. London: Longmans Green & Co.

5. Fowler R. H. & Guggenheim E. A. 1939 Statistical thermodynamics. Cambridge University Press.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SOLVENTS AND SOLUTES: INTERACTION, DISSOLUTION, POWER;Handbook of Solvents, Volume 1;2024

2. GENERAL PRINCIPLES GOVERNING DISSOLUTION OF MATERIALS IN SOLVENTS;Handbook of Solvents;2019

3. METHODS FOR THE MEASUREMENT OF SOLVENT ACTIVITY OF POLYMER SOLUTIONS;Handbook of Solvents;2014

4. Mehrstoffsysteme;Landolt-Börnstein;2013

5. Einstoffsysteme;Landolt-Börnstein;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3