The caesium resonator as a standard of frequency and time

Author:

Abstract

The construction, operation, and testing of the standard are described. The resonance employed is that due to the hyperfine splitting of caesium, having a frequency of approximately 9192 Mc/s. The transitions between the two atomic states F, m f (4,0) and F, m F (3, 0) are detected in an atomic-beam chamber, in which the length of the transition region is 47 cm, giving a width of resonance, at half deflexion, of 350 cycles, and a standard deviation of setting to the peak of the resonance of ± l c/s . It is shown that the geometrical parameters of the beam chamber such as slit widths, alinement of the beam, and shape of the pole-pieces of the deflecting magnets are relatively unimportant, and that other parameters, including the pressure in the beam chamber, the temperature of the oven, from which the caesium atoms are evaporated, and the radio-frequency power exciting the transitions can be varied throughout wide limits without causing changes in resonant frequency exceeding 1 part in 10 10 . A unidirectional magnetic field is applied over the transition region to remove the field-dependent resonant lines of the Zeeman pattern from the central line which depends on the field to only a second-order extent. It has been found that a satisfactory resonance is obtained with a field as low as 0.05 Oe at which the total effect of the field on the frequency is only 1 c/s. The dependence of the frequency on the phase conditions in the two-cavity resonators carrying the exciting field is studied, and it is concluded that the phases can be made sufficiently close to enable the frequency to be defined with a precision of ± 1 part in 10 10 . The resonator is used as a passive instrument to calibrate the quartz clocks, usually at intervals of a few days; and it is estimated that the clocks calibrated in this way provide at all times the atomic unit of frequency and time interval with a standard deviation of ± 2 parts in 10 10 . The quartz clocks are also calibrated in terms of astronomical time and the results are compared for the period from June 1955 to June 1956. For operational purposes the frequency of the resonance was taken as 9 192 631 830 c/s which was the value obtained in terms of the unit of uniform astronomical time made available by the Royal Greenwich Observatory in June 1955. The value is being determined in terms of the second of ephemeris time, which has now been adopted by the International Committee of Weights and Measures as the unit of time, but to obtain the accuracy required the comparison must be extended over a long interval in view of the difficulties associated with the astronomical measurements.

Publisher

The Royal Society

Subject

General Engineering

Reference19 articles.

1. Atomic Beam Magnetic Resonance Experiments with Radioactive ElementsNa22,K40,Cs135, andCs137

2. Proc;Essen L.;Instn Elect. Engrs, 100, pt.,1953

3. V e Congres International de;Essen L.;Chronometrie. Ann.frang. Chronom,1955

4. Atomic Time and the Definition of the Second

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3