Gaseous unimolecular reactions: Theory of the effects of pressure and of vibrational degeneracy

Author:

Abstract

A theory which gave the high-pressure unimolecular reaction rate as K 8 = v exp ( — E 0 /kT) is extended to find the decline of rate with pressure; the gas molecule is again a classical vibrating system which dissociates at a critical extension of an internal co-ordinate. The general rate K is found to be approximately... where n is the effective number of normal modes of vibration; d is proportional to pT~^n, but depends also on the molecular structure and size. For n < 13, this integral is tabulated, and the pressures at which the rate declines from first order are estimated. The pressure tends to decrease as n increases; for E 0 /k T ~ 40, it is estimated that only molecules with six or more atoms should show rates approaching KCX) at normal pressures. The table of K/K;a is not carried as far as the ‘bimolecular’ range, but a precise technique is developed for this region. The theory is compared with Kassel’s classical theory of a molecule of s ‘oscillators’. The lowpressure activation energy, and the shape of the curve of log K against log p, are similar in the two theories if n = 2s — 1; the absolute values of p for a given rate are also roughly comparable. Two results are proved, for the present severely classical model, concerning special cases. (i) A pair or triplet of degenerate modes with equal frequencies counts as one in assessing ‘n’ for the general rate K. (ii) If the dissociation co-ordinate q relates atoms ml, and mx is replaced by an isotope m*, the high-pressure rate changes in the ratio d{m 1 (m*+ m 2 )/m^(m 1 +m 2 )}; for this, the internal potential energy V need not be quadratic, nor need q be isolated in V from other co-ordinates.

Publisher

The Royal Society

Subject

General Engineering

Reference7 articles.

1. J . Chem. Phys. 17 675. Phys.Chem. 56 823. J.Chem. Phys. 19 663.

2. Kac M. 1943 Amer.J. M ath. 65 609.

3. Kassel L. S. 1932 Kinetics o f homogeneous gas reactions. New York: Chemical Catalog Co.

4. Marcus R. A. 1952 a

5. Marcus R. A. 1952

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3