Abstract
It is shown in this part how the theory of large elastic deformations of incompressible isotropic materials, developed in previous parts, can be used to interpret the load-deformation curves obtained for certain simple types of deformation of vulcanized rubber test-pieces in terms of a single stored-energy function. The types of experiment described are: (i) the pure homogeneous deformation of a thin sheet of rubber in which the deformation is varied in such a manner that one of the invariants of the strain,
I
1
or
I
2
, is maintained constant; (ii) pure shear of a thin sheet of rubber (i.e. pure homogeneous deformation in which one of the extension ratios in the plane of the sheet is maintained at unity, while the other is varied); (iii) simultaneous simple extension and pure shear of a thin sheet (i.e. pure homogeneous deformation in which one of the extension ratios in the plane of the sheet is maintained constant at a value less than unity, while the other is varied); (iv) simple extension of a strip of rubber; (v) simple compression (i.e. simple extension in which the extension ratio is less than unity); (vi) simple torsion of a right-circular cylinder; (vii) superposed axial extension and torsion of a right-circular cylindrical rod. It is shown that the load-deformation curves in all these cases can be interpreted on the basis of the theory in terms of a stored-energy function
W
which is such that δ
W
/δ
I
1
is independent of
I
1
and
I
2
and the ratio (δ
W
/δ
I
2
) (δ
W
/δ
I
1
) is independent of
I
1
and falls, as
I
2
increases, from about 0*25 at
I
2
= 3.
Cited by
1214 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献