Affiliation:
1. W. M. Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711, USA
Abstract
Egg development is a defining process of reproduction in higher eukaryotes. In the fruit fly,
Drosophila melanogaster
, this process begins with four mitotic divisions starting from a single germ cell, producing a cyst of 16 cystocytes; one of these cells will become the oocyte and the others supporting nurse cells. These mitotic divisions are exceptional because cytokinesis is incomplete, resulting in the formation of cytoplasmic bridges known as ring canals that interconnect the cystocytes. This organization allows all cystocytes to divide synchronously during each mitotic round, resulting in a final, power-of-2 number of germ cells. Given that numerous insects obey this power-of-2 rule, we investigated if strict cell doubling is a universal, underlying cause. Using confocal microscopy, we found striking departures from this paradigm in three different power-of-2 insects belonging to the Apocrita suborder (ants, bees and wasps). In these insects, the earliest-formed cystocytes cease to divide during the latter mitotic cycles while their descendants undergo further division, thereby producing a ‘radial’ direction of division activity. Such cystocyte division patterns that depart from strict cell doubling may be ‘fine-tuned’ in order to maintain a final, power-of-2 germ cell number.
Funder
United States National Science Foundation
Subject
General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献