Noise constrains heterospecific eavesdropping more than conspecific reception of alarm calls

Author:

Zhou You1ORCID,Radford Andrew N.2ORCID,Magrath Robert D.1ORCID

Affiliation:

1. Division of Ecology & Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia

2. School of Biological Sciences, University of Bristol, Bristol, UK

Abstract

Many vertebrates eavesdrop on alarm calls of other species, as well as responding to their own species' calls, but eavesdropping on heterospecific alarm calls might be harder than conspecific reception when environmental conditions make perception or recognition of calls difficult. This could occur because individuals lack hearing specializations for heterospecific calls, have less familiarity with them, or require more details of call structure to identify calls they have learned to recognize. We used a field playback experiment to provide a direct test of whether noise, as an environmental perceptual challenge, reduces response to heterospecific compared to conspecific alarm calls. We broadcast superb fairy-wren ( Malurus cyaneus ) and white-browed scrubwren ( Sericornis frontalis ) flee alarm calls to each species with or without simultaneous broadcast of ambient noise. Using two species allows isolation of the challenge of heterospecific eavesdropping independently of any effect of call structure on acoustic masking. As predicted, birds were less likely to flee to heterospecific than conspecific alarm calls during noise. We conclude that eavesdropping was harder in noise, which means that noise could disrupt information on danger in natural eavesdropping webs and so compromise survival. This is particularly significant in a world with increasing anthropogenic noise.

Funder

Australian Research Council

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3