Behavioural plasticity in a native species may be related to foraging resilience in the presence of an aggressive invader

Author:

Keiller Melinda L.1,Lopez Laura K.2,Paijmans Kai C.1,Wong Marian Y. L.1ORCID

Affiliation:

1. School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia

2. Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA

Abstract

Competition between invasive and native species can result in the exploitation of resources by the invader, reducing foraging rates of natives. However, it is increasingly recognized that multiple factors can enhance the resilience of native species competing for limiting resources with invaders. Although extensively studied in terrestrial species, little research has focused on behavioural plasticity in aquatic ecosystems and how this influences native species resilience. Here, we examined the role of behavioural plasticity in interactions between a native Australian fish, Pseudomugil signifer, and a widespread invasive fish, Gambusia holbrooki . To determine whether P. signifer displays behavioural plasticity that may mitigate competition with G. holbrooki , we first quantified social behaviours (aggression, submission and affiliation) and shoal cohesion for each species in single- and mixed-species groups. Second, we compared the feeding rates of both species in these groups to ascertain if any modulation of social behaviours and cohesion related to foraging success. We found that aggressive and submissive behaviours of G. holbrooki and P. signifer showed plasticity in the presence of heterospecifics, but social affiliation, shoaling and, most importantly, foraging, remained inflexible. This variation in the degree of plasticity highlights the complexity of the behavioural response of a native species and suggests that both behavioural modulation and consistency may be related to sustaining foraging efficiency in the presence of an invader.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3