Sparse spike trains and the limitation of rate codes underlying rapid behaviours

Author:

Fabian Joseph M.1ORCID,O'Carrol David C.2,Wiederman Steven D.1

Affiliation:

1. School of Biomedicine, The University of Adelaide, Adelaide, South Australia 5005, Australia

2. Department of Biology, Lund University, Lund 22362, Sweden

Abstract

Animals live in dynamic worlds where they use sensorimotor circuits to rapidly process information and drive behaviours. For example, dragonflies are aerial predators that react to movements of prey within tens of milliseconds. These pursuits are likely controlled by identified neurons in the dragonfly, which have well-characterized physiological responses to moving targets. Predominantly, neural activity in these circuits is interpreted in context of a rate code, where information is conveyed by changes in the number of spikes over a time period. However, such a description of neuronal activity is difficult to achieve in real-world, real-time scenarios. Here, we contrast a neuroscientists' post-hoc view of spiking activity with the information available to the animal in real-time. We describe how performance of a rate code is readily overestimated and outline a rate code's significant limitations in driving rapid behaviours.

Funder

Swedish Research Council

Australian Research Council

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3