Dopamine mediates the pea aphid wing plasticity

Author:

Liu Xiaomi1ORCID,Brisson Jennifer A.1ORCID

Affiliation:

1. Department of Biology, University of Rochester, Rochester, NY 14610, USA

Abstract

Many organisms exhibit phenotypic plasticity, in which developmental processes result in different phenotypes depending on their environmental context. Here we focus on the molecular mechanisms underlying that environmental response. Pea aphids ( Acyrthosiphon pisum ) exhibit a wing dimorphism, in which pea aphid mothers produce winged or wingless daughters when exposed to a crowded or low-density environment, respectively. We investigated the role of dopamine in mediating this wing plasticity, motivated by a previous study that found higher dopamine titres in wingless- versus winged-producing aphid mothers. In this study, we found that manipulating dopamine levels in aphid mothers affected the numbers of winged offspring they produced. Specifically, asexual female adults injected with a dopamine agonist produced a lower percentage of winged offspring, while asexual females injected with a dopamine antagonist produced a higher percentage of winged offspring, matching expectations based on the titre difference. We also found that genes involved in dopamine synthesis, degradation and signalling were not differentially expressed between wingless- and winged-producing aphids. This result indicates that titre regulation possibly happens in a non-transcriptional manner or that sampling of additional timepoints or tissues is necessary. Overall, our work emphasizes that dopamine is an important component of how organisms process information about their environments.

Funder

National Science Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3