An ensemble approach integrating LSTM and ARIMA models for enhanced financial market predictions

Author:

Mochurad Lesia1ORCID,Dereviannyi Andrii1

Affiliation:

1. Department of Artificial Intelligence, Lviv Polytechnic National University, Kniazia Romana str., 5 , Lviv 79905, Ukraine

Abstract

Forecasting financial markets is a complex task that requires addressing various challenges, such as market complexity, data heterogeneity, the need for rapid response and constant changes in conditions, to gain a competitive advantage. To effectively address these challenges, it is necessary to constantly improve existing and develop new methods of intelligent forecasting, which will improve the accuracy of forecasts, reduce risks and increase the productivity of financial decision-making processes. In this article, we study and analyse forecasting methods in financial markets, such as support vector regression (SVR), autoregressive integrated moving average (ARIMA), long short-term memory recurrent neural network (LSTM) and extreme gradient boosting algorithm (XG-Boost). Based on this analysis, we propose an ensemble forecasting procedure that integrates LSTM and ARIMA models. Due to the careful combination of these models, our approach yields better results than individual methods. For example, our model demonstrates a significant 15% improvement in root mean square error (RMSE) and a slight improvement in coefficient of determination compared with LSTM. Furthermore, simulation results obtained on three real-world datasets and evaluated using the RMSE criterion confirm the superiority of our proposed method over alternative methods such as LSTMs, transformer models and optimized deep recurrent neural networks with long short-term memory for financial market forecasting. Furthermore, our approach creates the prerequisites for parallelizing both models, thus providing an opportunity to accelerate forecasting results in future research.

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3