Preparation of carbon-supported ruthenium spinel oxide catalyst and application thereof in the oxidation of 5-hydroxymethylfurfural

Author:

Zheng Junchi1,Wang Zhifeng1,Shi Qiulan2,Jiang Lipeng1,Yang Cuiping1,Zhang Yuan1,Zhao Jianbo1

Affiliation:

1. Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, Tarim University, Alar, Xinjiang 843300, People’s Republic of China

2. Quality and Technique Supervision Bureau, Alar, Xinjiang, Xinjiang 843300, People’s Republic of China

Abstract

Trivalent ruthenium (Ru) can catalyse the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA). However, the structure of Ru itself is unstable and is prone to aggregation and oxidation, leading to a decrease in catalytic activity. Therefore, it is necessary to prepare a stable, reliable, Ru-based catalyst. Based on the catalytic properties of trivalent Ru, a stable spinel structure with zinc ferrite was designed and loaded onto different carbon supports to prepare a homogeneous and stable Ru-based catalyst. The structure and physico-chemical properties were characterized through scanning electron microscopy, X-ray diffraction, transmission electron microscopy and other techniques, and the catalyst was applied to the oxidation of HMF for the preparation of FDCA. The results show that the prepared magnetic activated carbon-supported Ru-based catalyst has a concentrated particle size distribution in the range of 5–8 nm, with a loading amount of 3.61 at%. It exhibits strong soft magnetism, which is beneficial for Ru loading. Additionally, it can be reused in the oxidation of HMF to prepare FDCA over 10 cycles, with the product yield remaining essentially unchanged. The catalyst prepared in this study is characterized by recyclability and structural stability, making it promising for practical applications.

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3