Vocal repertoire and individuality in the plains zebra ( Equus quagga )

Author:

Xie Bing12ORCID,Daunay Virgile134ORCID,Petersen Troels C.5ORCID,Briefer Elodie F.1ORCID

Affiliation:

1. Behavioural Ecology Group, Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark

2. Research and Conservation, Copenhagen Zoo, Roskildevej 38, 2000 Frederiksberg, Denmark

3. Laboratoire Dynamique du Langage, CNRS, University Lumière Lyon 2, Lyon, France

4. ENES Bioacoustics Research Lab, CRNL, CNRS, Inserm, University of Saint-Etienne, 42100 Saint-Etienne, France

5. Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Abstract

Acoustic signals are vital in animal communication, and quantifying them is fundamental for understanding animal behaviour and ecology. Vocalizations can be classified into acoustically and functionally or contextually distinct categories, but establishing these categories can be challenging. Newly developed methods, such as machine learning, can provide solutions for classification tasks. The plains zebra is known for its loud and specific vocalizations, yet limited knowledge exists on the structure and information content of its vocalzations. In this study, we employed both feature-based and spectrogram-based algorithms, incorporating supervised and unsupervised machine learning methods to enhance robustness in categorizing zebra vocalization types. Additionally, we implemented a permuted discriminant function analysis to examine the individual identity information contained in the identified vocalization types. The findings revealed at least four distinct vocalization types—the ‘snort’, the ‘soft snort’, the ‘squeal’ and the ‘quagga quagga’—with individual differences observed mostly in snorts, and to a lesser extent in squeals. Analyses based on acoustic features outperformed those based on spectrograms, but each excelled in characterizing different vocalization types. We thus recommend the combined use of these two approaches. This study offers valuable insights into plains zebra vocalization, with implications for future comprehensive explorations in animal communication.

Funder

Carlsberg Foundation

Chinese Scholarship Council

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3