Discrete and continuous mathematical models of sharp-fronted collective cell migration and invasion

Author:

Simpson Matthew J.1ORCID,Murphy Keeley M.1,McCue Scott W.1,Buenzli Pascal R.1ORCID

Affiliation:

1. School of Mathematical Sciences, Queensland University of Technology , Brisbane, Queensland, Australia

Abstract

Mathematical models describing the spatial spreading and invasion of populations of biological cells are often developed in a continuum modelling framework using reaction–diffusion equations. While continuum models based on linear diffusion are routinely employed and known to capture key experimental observations, linear diffusion fails to predict well-defined sharp fronts that are often observed experimentally. This observation has motivated the use of nonlinear degenerate diffusion; however, these nonlinear models and the associated parameters lack a clear biological motivation and interpretation. Here, we take a different approach by developing a stochastic discrete lattice-based model incorporating biologically inspired mechanisms and then deriving the reaction–diffusion continuum limit. Inspired by experimental observations, agents in the simulation deposit extracellular material, which we call a substrate , locally onto the lattice, and the motility of agents is taken to be proportional to the substrate density. Discrete simulations that mimic a two-dimensional circular barrier assay illustrate how the discrete model supports both smooth and sharp-fronted density profiles depending on the rate of substrate deposition. Coarse-graining the discrete model leads to a novel partial differential equation (PDE) model whose solution accurately approximates averaged data from the discrete model. The new discrete model and PDE approximation provide a simple, biologically motivated framework for modelling the spreading, growth and invasion of cell populations with well-defined sharp fronts. Open-source Julia code to replicate all results in this work is available on GitHub .

Funder

Australian Research Council

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3