A genetic algorithm optimization framework for the characterization of hyper-viscoelastic materials: application to human articular cartilage

Author:

Allen Piers1,Cox Sophie C.2,Jones Simon3,Espino Daniel M.4ORCID

Affiliation:

1. Physical Sciences for Health CDT, Department of Chemistry, University of Birmingham , Birmingham, UK

2. School of Chemical Engineering, University of Birmingham , Birmingham, UK

3. Institute of Inflammation and Ageing, University of Birmingham , Birmingham, UK

4. Department of Mechanical Engineering, University of Birmingham , Birmingham, UK

Abstract

This study aims to develop an automated framework for the characterization of materials which are both hyper-elastic and viscoelastic. This has been evaluated using human articular cartilage (AC). AC (26 tissue samples from 5 femoral heads) underwent dynamic mechanical analysis with a frequency sweep from 1 to 90 Hz. The conversion from a frequency- to time-domain hyper-viscoelastic material model was approximated using a modular framework design where finite element analysis was automated, and a genetic algorithm and interior point technique were employed to solve and optimize the material approximations. Three orders of approximation for the Prony series were evaluated at N = 1, 3 and 5 for 20 and 50 iterations of a genetic cycle. This was repeated for 30 simulations of six combinations of the above all with randomly generated initialization points. There was a difference between N = 1 and N = 3/5 of approximately ~5% in terms of the error estimated. During unloading the opposite was seen with a 10% error difference between N = 5 and 1. A reduction of ~1% parameter error was found when the number of generations increased from 20 to 50. In conclusion, the framework has proved effective in characterizing human AC.

Funder

EPSRC

Arthritis Research UK

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3