The relation between porosity, microstructure and strength, and the approach to advanced cement-based materials

Author:

Abstract

A theory is formulated to connect the strength of cement paste with its porosity. The theory shows that bending strength is largely dictated by the length of the largest pores, as in the Griffith (1920) model, but there is also an influence of the volume of porosity, which affects toughness through changing elastic modulus and fracture energy. Verification of this theory was achieved by observing the large pores in cement, and then relating bending strength to the measured defect length, modulus and fracture energy. The argument was proved by developing processes to remove the large pores from cement pastes, thereby raising the bending strength to 70 MPa. Further removal of colloidal pores gave a bending strength of 150 MPa and compression strength up to 300 MPa with improved toughness. Re-introduction of controlled pores into these macro-defect-free (mdf) cements allowed Feret’s law (1897) to be explained.

Publisher

The Royal Society

Subject

General Engineering

Reference60 articles.

1. Abrams D. 1918 Bull. Univ. Chicago struct. Mater. Res. Lab. Lewis Inst. Chicago . no. 1.

2. A theoretical argument for the existence of high strength cement pastes

3. Alford N. McN. & Double D. D. 1982 In Adsorption at the gas-solid and liquid-solid interface (ed. J. Rouquerol & K. S. W. Sing) pp. 259-268. Amsterdam: Elsevier.

4. An assesment of porosity and pore sizes in hardened cement pastes

5. Porosity measurement of some hydrated cementitious systems by high pressure mercury intrusion-microstructural limitations

Cited by 223 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3