Dynamical aspects of shallow sea fronts

Author:

Abstract

We examine the role of internal friction in the evolution of a two-dimensional front in a rotating stratified fluid. For a two-layer fluid with interfacial friction the depth of the frontal interface satisfies a diffusion equation with respect to time and the cross-frontal coordinate. Similarity solutions are used to compare the behaviour of the front for linear and quadratic interfacial friction laws. For a continuously stratified front a simple formula is derived for the cross-frontal flow induced by friction, parametrized in terms of an eddy viscosity coefficient Av, provided that the Rossby and Ekman numbers are small. Outside surface and bottom Ekman layers the deptht) of an isopycnal with density p satisfies the diffusion equation z t — [(A 1 2/ / 2) where are the Väisälä and Coriolis frequencies, x is the cross-frontal coordinate and t is time. The consequences of this for the evolution and maintenance of a front are discussed. The circulation in tidal mixing fronts is examined, with results being presented for a semi-analytic diagnostic model, which is fitted to two particular continental shelf fronts. A prominent feature is a two-cell circulation pattern in the plane normal to the front. A variety of cross-frontal transfer mechanisms are discussed, with order-of-magnitude comparisons of their importance being made. Transfer by the mean flow appears to be more important than either shear flow dispersion or the flux associated with baroclinic eddies, but the results are sensitive to the parametrization of vertical mixing of momentum.

Publisher

The Royal Society

Subject

General Engineering

Reference29 articles.

1. (G arrett & Loder)

2. A Ilen C. M . Sim pson J . H . & Carson R . M . 1980 Oceanologica Acta 3 5 9 -6 8 .

3. J;Bow K .;Fluid Mech.,1965

4. Estuar. coast. mar;Bow K .;Sci.,1975

5. J . geophys;Res.,1976

Cited by 202 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3