A comparison of foreland and rift margin sedimentary basins

Author:

Abstract

Foreland and rift margin basins are compared on the basis of (1) their tectonic setting, (2) reasons for subsidence, and (3) their large-scale geophysical and geological characteristics. The thermal and mechanical properties of the underlying lithosphere are shown to be fundamental to the form of tectonic subsidence. The lithosphere beneath foreland basins is flexurally downwarped by the loading of the adjacent fold-thrust belt, whereas tectonic subsidence at rifted margins is caused by mass replacement at depth, during lithospheric extension on rifting, and subsequent thermal contraction as the lithosphere cools. The effects of rheology, thermal maturity, and lateral changes in properties of the lithosphere are outlined for foreland basins, as is the topographic effect of possible phase changes beneath the fold-thrust belt. The thermal and rheological consequences of lithospheric extension at rift margins makes flexural subsidence relatively less important than in foreland basins. Flexure may, however, be partly responsible for uplift landward of the hinge line that is associated with rifting. Other mechanisms that could cause such uplift include depth-dependent extension and thermal expansion due to the lateral diffusion of heat. The models describing the evolution of these basins are shown to predict characteristics that are in accord with observations. The superposition of foreland and rift margin basins as a result of ocean closure can lead to an overall basin stratigraphy that is complex. Such phases of basin subsidence must be separated according to the tectonic environment in which they formed in any analysis of the cause and consequences of basin evolution.

Publisher

The Royal Society

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3