Energy from the biological conversion of solar energy

Author:

Abstract

Trees and other forms of vegetation are well designed for the collection and storage of solar energy. Moreover, photosynthetic organisms show enormous diversity and are well adapted for a wide range of environments. Biomass is convertible to liquid and gaseous fuels by a number of established processes, and this paper examines the possible contribution of biomass to world energy demands. The maximum efficiency of solar energy conversion in plant production is 5-6 %, but plants grown under usual field conditions do not achieve this degree of conversion. The highest yielding crops convert solar energy into plant material with an efficiency of 1-2%, but the average yields of the major crops and forests indicate considerably lower efficiencies. The average efficiency of solar energy conversion on a global scale is estimated as about 0.15 %. The energy content of the annual biomass residues in Australia and U.S.A. is equal to about one-quarter of the primary energy use in those countries, but only about one-third of the residues are considered to be readily recoverable. A number of high yielding crops are examined as potential fuel crops. Energy inputs for growing non-irrigated crops in Australia are estimated to amount to 7-17 % of the solar energy stored in the total crop biomass. Irrigation adds considerably to the energy cost of producing crops. The overall energy efficiency of fuel production from biomass varies from 20 to 58%, depending on the nature of the biomass and the process used to produce liquid or gaseous fuel. A recent estimate by an Australian committee of the potential contribution of biomass to liquid fuel production in Australia is presented. It is concluded that biomass will not be able to provide a substantial fraction of the world’s energy demand, although it can make a useful contribution.

Publisher

The Royal Society

Subject

General Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3