Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions

Author:

Abstract

The improvement in oxidation resistance of high temperature alloys as a result of additions of rare earth elements, other reactive metals, or dispersions of stable oxides, has been known for many years. Two effects seem the most important: first, the adhesion between scale and alloy is markedly improved and this increases the alloy’s resistance to thermal cycling exposure; secondly, in some but not all cases the actual growth rate of the oxide is also reduced. The various models proposed to explain these phenomena are discussed in the light of currently available experimental evidence. The most significant of these involve modification to the early, transient stages of oxidation, doping of the oxide which changes its transport properties, mechanical keying of the surface scale to the substrate by the formation of intrusions of oxide penetrating into the alloy and the elimination of void formation at the alloy-scale interface. The efficacies of the various beneficial additions are compared.

Publisher

The Royal Society

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3