Attenuation in the earth at low frequencies

Author:

Abstract

The introduction of global, digitally recording, seismic networks has provided the seismological community with a large quantity of high quality data. At low frequencies the IDA (International Deployment of Accelerometers) network provides the best available data and, in this report, over 500 IDA records have been carefully analysed giving nearly 4000 reliable measurements of centre frequency and apparent attenuation of fundamental spheroidal modes. The attenuation rate of a normal mode of free oscillation of the Earth is measured in terms of its or quality factor and mean Q values for the modes 0 S 8 - 0 S 46 are presented with standard deviations of 2-9% . Mean centre frequencies have relative standard deviation of 5 x 10- 5 to 5 x 10- 4 . The distribution of the centre frequencies reveals a large-scale aspherical structure in velocity and density but the distribution of the apparent attenuation measurements does not reveal a corresponding structure. A total of 26 new measurements of the mean Q of overtone modes with standard deviations of 5-30 % have also been obtained by using single-record and multiple-record techniques. Combining the new data with reliable Q measurements from the literature gives a total of 71 data with which we can infer the radial structure of attenuation inside the Earth. This structure is not well constrained in detail and very simple models are capable of fitting the data. Experiments with synthetic data show that an improvement of an order of magnitude in both the number and quality of the measurements is required to make detailed inferences about the structure of attenuation. The data do constrain the average shear Q- 1 in the inner core to be 1/3500 ( ± 60 %) and the average shear Q- 1 the mantle to be 1/250 ( ± 4 %). These values are appropriate for frequencies less than 5 mHz. Comparison with published values at higher frequencies indicates there is a measurable frequency dependence of attenuation between 3 and 30 mHz. Very little can be inferred about bulk dissipation in the Earth beyond that it must exist to satisfy the attenuation of the radial modes. Experiments show that the data can be satisfied if bulk attenuation is an average 1.3%, or more, of the shear attenuation. Constraining bulk attenuation to be no greater than 2 % of the shear attenuation, and constraining the outer core to have no attenuation, forces bulk attenuation to be concentrated in the upper mantle.

Publisher

The Royal Society

Subject

General Engineering

Reference49 articles.

1. Aki K . & Richards P. G. 1980 Quantitative seismology. San Francisco: W. H . Freem an.

2. Qofthe E arth. J.geophys;Anderson D. L.;Res.,1978

3. N um erical applications of a formalism for geophysical inverse problems. Geobhvs. J l R. astr;Backus G.;Soc.,1967

4. T he resolving power of gross E arth data. Geophys. J l R. astr;Backus G.;Soc.,1968

5. Uniqueness in the inversion of inaccurate gross Earth data

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constraint on the focal mechanism of the 2011 Tohoku earthquake from the radial modes;Geodesy and Geodynamics;2024-01

2. Free Oscillations of the Earth;Encyclopedia of Solid Earth Geophysics;2021

3. New measurements of long-period radial modes using large earthquakes;Geophysical Journal International;2020-10-16

4. Constraining 1-D inner core attenuation through measurements of strongly coupled normal mode pairs;Geophysical Journal International;2020-06-27

5. Free Oscillations of the Earth;Encyclopedia of Solid Earth Geophysics;2019-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3