Radiation hardening in magnox pressure-vessel steels

Author:

Abstract

The ferritic steels used for reactor pressure vessels undergo a marked transition from ductile to brittle fracture behaviour over a relatively narrow temperature range. For most unirradiated mild steels the ductile to brittle transition temperature (d.b.t.t.) is between — 50° and 20 °C. The process of irradiation hardening, through the formation of clusters of interstitial or vacancy defects, increases the friction stress of these steels and thereby raises the transition temperature. Given the inherent tendency of these steels to fail in a brittle manner, the raising of the transition temperature under neutron irradiation poses a problem of considerable technological importance in the nuclear industry. At the time (1962) when the first of the Central Electricity Generating Board (C.E.G.B.) Magnox nuclear stations began operation the phenomenon of brittle fracture was already comparatively well understood. A theory of the process had already been developed and applied to the problem of radiation embrittlement. However, as the results from the Magnox pressure-vessel surveillance scheme accumulated, it gradually became evident that the measured changes in yield stress in the monitoring specimens could not be accounted for simply on the basis of irradiation hardening through the formation of damage clusters. By the late 1970s, sufficient data had been gathered from the surveillance programme to enable a detailed investigation of the processes occurring in the Magnox steels to be instituted. The form of the investigation was to subsequently evolve into two phases; an initial com prehensive microstructural study of the steels, followed by the formation of an interpretative model based on the observations. In this paper we present the Magnox yield-stress monitoring measurements and then briefly describe the principal findings from our microstructural studies. The Magnox pressure-vessel steels contain between 0.05 and 0 .4 % by mass of copper and we show that under certain conditions this element may precipitate as small spherical particles within the matrix of the steels. A review of previous work on copper precipitation in ferrite is then followed by a description of our model. This assumes that the changes in yield stress generally arise from the combined effects of irradiation damage loops and copper precipitates. The formation of the latter may be enhanced by irradiation and in some steels their contribution is dominant. It is shown that the model successfully accounts for the measurements made on both plate and weld steels in all the Magnox stations. Experimental support for the model comes from our own microstructural observations and from other studies, in the U.K. and elsewhere, using techniques which allow the detection of sub-microscopic particles in steels. The model may be applied to pressure-vessel steels in other reactor systems. Indeed, it predicts that the yield-stress changes in steels with a high copper content irradiated under p.w.r. (pressurized water reactor) conditions will be dominated by the contribution from copper precipitation.

Publisher

The Royal Society

Subject

General Engineering

Reference30 articles.

1. Barton P. J . Harries D. R. & Mogford I. L. 1 9 6 5 Effects o f neutron dose rate and irradiation temperature on hardening. J . IronSteel Inst. 2 03 507-510.

2. Bement A. L. 1 9 7 0 Fundamental materials problems in reactors. In Proceedings o f Second International Conference on Strength o f Metals and Alloys Pacific Grove California vol. 2 pp. 693-728. U .S.A .: ASM .

3. Burke J. 1 9 6 5 Precipitation kinetics. In The kinetics o fphase transformations in metals p. 55. Oxford: Pergamon Press.

4. Cottrell A. H. 1 9 6 1 Theoretical aspects of radiation damage and brittle fracture. In Steelsfo r reactor pressure circuits pp. 281-296. London and Bradford: Lund Humphries.

5. Diehl J. & Siedel G. P. 1 9 6 9 Effect of alloying and cold work on embrittlement. In Proceedings o f Symposium on Radiation Damage in Reactor Materials at Vienna pp. 187-212. Vienna: IAEA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3