Radio observations of molecules in the interstellar gas

Author:

Abstract

Radio astronomers have succeeded since 1968 in identifying nearly 50 molecules in the dense concentrations of the interstellar gas now generally termed molecular clouds. Most interstellar molecules are stable compounds familiar to the terrestrial chemist, but nearly one-fifth are ions, radicals and acetylenic carbon chains so reactive in the laboratory that before being detected in Space they had rarely been observed or were entirely unknown. The heavy atom backbone of the known interstellar molecules is a linear chain of C, N, O or S (Si is found in two diatomic molecules) ; rings and branched chains are missing. The most readily observed spectral lines of most interstellar molecules are rotational transitions at millimetre wavelengths. These are generally excited by H 2 collisions, and depending on the H 2 number density, the levels can be either in rotational equilibrium, or far from it. Maser line emission from OH, H 2 0 , SiO and CH 3 OH - extremely intense, small sources typically much less than 1" in angular size, often polarized and sometimes time-dependent - are the most striking examples of nonequilibrium excitation. A number of rare isotopic species are observed in interstellar molecules, those ol C, N and O having been studied the most intensively. Isotopic ratios differing from those on Earth by two- or threefold apparently exist, and in all but one case can be attributed to stellar nucleosynthesis since the formation of the Solar System. Molecular clouds apparently constitute an appreciable fraction of the interstellar medium by mass and are the largest reservoir of matter in Nature subject to the chemical bond. They are of great astronomical interest because of their central role in star formation and galactic structure: it is possible that all stars form in molecular clouds, and as molecular clouds are largely restricted to the spiral arms, they provide a new and highly specific tracer of the large-scale structure of the galactic system.

Publisher

The Royal Society

Subject

General Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Possible Driving Force behind Formation of Cosmic Carbyne Crystals;The Astrophysical Journal;2008-08-26

2. Growth process of carbyne crystals by synchrotron irradiation;Carbon;2002-06

3. The H+3molecule ion: A two‐particle density study of electron correlation;The Journal of Chemical Physics;1994-08-15

4. A 110 GHz SIS receiver for radio astronomy;International Journal of Infrared and Millimeter Waves;1990-06

5. Molecular Processes in the Interstellar Medium;Topics in Molecular Organization and Engineering;1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3