Abstract
We study several methods of describing ‘explicit’ solutions to equations of Korteweg-de Vries type: (i) the method of algebraic geometry (Krichever, I.M.
Usp. mat. Nauk
32, 183-208 (1977)); (ii) the Grassmannian formalism of the Kyoto school (iii) acting on the trivial solution by the ‘group of dressing transformations’ (Zakharov, V. E. & Shabat, A. B.
Funct. Anal. Appl.
13 (3), 13-22 (1979)). I show that the three methods are more or less equivalent, and in particular that the ‘
r
-functions’ of method (ii) arise very naturally in the context of method (iii).
Reference10 articles.
1. On a class of polynomials connected with the Korteweg-de Vries equation. Communs math;Adler M.;Phys.,1978
2. Operator Approach to the Kadomtsev-Petviashvili Equation–Transformation Groups for Soliton Equations III–
3. Equations of Korteweg-de Vries type and simple Lie algebras;Drinfel'd V. G.;Dokl. Akad. Nauk SSSR,1981
4. Drinfel'd V. G. & Sokolov V. V. 1984 Lie algebras and equations of Korteweg-de Vries type. Itogi Nauki i Tekhnike ser Sovremennye Problemy Matematiki. 24 81-180.
5. Kac V. G. 1983 Infinite dimensional Lie algebras. Boston Basel Stuttgart: Birkhauser.
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献