Smectite clay minerals: properties and uses

Author:

Abstract

The physicochemical properties of smectite clay minerals that determine their industrial utilization are reviewed. Smectite is the name used for a group of phyllosilicate mineral species, the most important of which are montmorillonite, beidellite, nontronite, saponite and hectorite. These and several other less common species are differentiated by variations in chemical composition involving substitutions of Al for Si in tetrahedral cation sites and Al, Fe, Mg and Li in octahedral cation sites. Smectite clays have a variable net negative charge, which is balanced by Na, Ca, Mg and, or, H adsorbed externally on interlamellar surfaces. The structure, chemical composition, exchangeable ion type and small crystal size of smectite clays are responsible for several unique properties, including a large chemically active surface area, a high cation exchange capacity, interlamellar surfaces having unusual hydration characteristics, and sometimes the ability to modify strongly the flow behaviour of liquids. In terms of major industrial and chemical uses, natural smectite clays can be divided into three categories, Na smectites, Ca-Mg smectites and Fuller’s or acid earths. Large volumes of Na smectites and Na-exchanged Ca-M g smectites and Fuller’s earth are directly used in the foundry, oil well drilling, wine, and iron ore and feed pelletizing industries, and are also used in civil engineering to impede water movement. Significant volumes of Na smectites are used for various purposes in the manufacturing of many industrial, chemical and consumer products. Large quantities of Ca-M g smectites are used directly in iron foundries, in agricultural industries and for filtering and decolorizing various types of oils. A significant fraction of the Ca-M g smectites used for decolorizing has been acid treated. Large volumes of Fuller’s or acid earths are commercially used for preparing animal litter trays and oil and grease absorbents, as carriers for insecticides, and for decolorizing of oils and fats. Natural Na smectites occur in commercial quantities in only a few places, but Ca-M g smectite and Fuller’s earth deposits of considerable size occur on almost every continent.

Publisher

The Royal Society

Subject

General Engineering

Reference15 articles.

1. Brindley G. W. & Brown G. 1980 Crystal structures o fclay minerals and their X-ray identification. L ond on : Mineralogical Society.

2. Interlayer complexes in layer silicates. The structure of water in lamellar ionic solutions

3. G reene-K elly R . 1957 T he m ontmorillonite minerals (smectites). In The differential thermal investigation o f clays. Ch. 6. London: M ineralogical Society.

4. Grim R . E. 1968 Clay mineralogy 2nd edn. N ew York: M cGraw-Hill.

5. M ontmorillonite: high temperature reactions and classification;Grim R .;Am. Miner.,1961

Cited by 266 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3