Abstract
It is well known that in regions in which the refractive index varies sufficiently slowly, Schrödinger’s equation can be very simply treated by using its connexion with Hamilton-Jacobi’s differential equation. It is also known that a similar approximation is possible in regions of slowly varying
imaginary
refractive index (total reflexion). For the latter case the method was developed in papers by Jeffreys (1924), Wentzel (1926), Brillouin (1926) and Kramers (1926). These papers discuss also the behaviour of the wave function in the neighbourhood of the limit between the regions of real and imaginary refractive index. But although the connexion with the Hamilton-Jacobi equation holds in any number of dimensions, this equation can be solved by elementary means only in one dimension (or for problems that can by separation be reduced to one dimension), and for this reason the practical application of the method has so far been limited to one-dimensional or separable problems. In the present paper we discuss the case of more than one dimension and show that certain very simple inequalities may be obtained.
Reference4 articles.
1. C.R;Brillouin L.;Acad. Sci. Paris,1926
2. K ram ers H . A. 1926 Z.Phys. 3 9 828.
3. W entzel G. 1926 Z . Phys. 3 8 518.
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献