The elastic stability of a thin twisted strip—II

Author:

Abstract

I—In a previous paper the present writer discussed both theoretically and experimentally the equilibrium and elastic stability of a thin twisted strip, and the results obtained by the theory were found to be in good agreement with observation. It has, however, been pointed out by Professor Southwell, F. R. S., that the solution of the stability equations which was given in that paper may only be regarded as an approximate solution for, although it satisfies exactly the differential equations and two boundary conditions along the edge of the strip, it only satisfies the two remaining boundary conditions approximately. The author has also noticed that the coefficients n a m in the Fourier expansion of θ 2 cos which were used in A are incorrect when m = 0, and this has led to errors in the numerical work so that the values of ᴛb 2 / π 2 h which are given in Table I of A are wrong. In the present paper a solution of the stability equations is obtained which satisfies all the boundary conditions. This solution is very much more complicated than the approximate solution and much greater labour is required for the numerical work. The numerical work for the approximate solution of A has also been revised and the corrected results are given in 9, 10. It is found that the results for the approximate solution are in good agreement with those obtained from the exact solution and that both agree moderately well with the experimental results which are given in A. The main part of this paper is an extension of the previous work and is concerned with the stability of a thin twisted strip when it is subjected to a tension along its length. The theory has been compared with experiment and satisfactorily good agreement between them was found.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference2 articles.

1. Proc. Roy;Soc. A,1936

2. Proc;Camb. Phil. Soc.,1935

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3