The change of resistance of a semi-conductor in a magnetic field

Author:

Abstract

One may say that prior to the introduction of the Fermi-Dirac statistics into the theory of metallic conduction and allied phenomena a general mathematical method of attack on the various problems had been developed which necessarily still forms the basis of the modern treatment; but nevertheless in most cases the older theory had little success in predicting the order of magnitude, and in some cases, even the qualitative features of the various effects. However, the ground had been well prepared, so that as soon as it was realized that the electrons in a metal did not really obey the Maxwell but the Fermi-Dirac statistics, the mere introduction of the latter distribution function in the place of the former in the classical equations proved sufficient to clear away many of the old difficulties. Since the appearance of Sommerfeld’s paper in 1928 the first order effects have received on the whole a satisfactory explanation. In the case of the second order effects, however— and it is with one of these that the present paper deals—there are still very considerable difficulties to be faced. The problem of the change of resistance of a metal in a magnetic field has been treated by Sommerfeld, making use of a method which was originally developed by Gans. The calculations follow closely the classical treatment of Lorentz in that the mean free path of an electron is introduced phenomenologically as a parameter to be determined from the known experimental value of the conductivity. In the classical theory one pictures the process as follows. The metal is regarded as having a regular three-dimensional lattice structure with the metallic ions situated at the lattice points. It is further supposed that there are a certain number of conduction electrons, which might well correspond with the valency electrons, and that the assembly of conduction electrons obeys the classical distribution law. When an electric field is applied in a given direction the electrons are accelerated and experience elastic collisions with the metallic ions. Finally an equilibrium state is reached in which the number of electrons entering a given velocity range in unit time is just equal to the number ejected by collisions, and the mathematical expression of this state takes the form of an integral equation which must be solved to find the change in the original distribution function due to the applied field. From the change in the distribution function the conductivity is calculated. In the semi-classical calculations of Sommerfeld the model is the same except that the Fermi-Dirac statistics are used instead of the Max-wellian. If one compares the value of the conductivity, thus obtained, with the experimental value, one obtains a mean free path which is about a hundred times greater than the lattice spacing. This large value is not very plausible on classical ideas; but is readily understandable on wave mechanical principles.

Publisher

The Royal Society

Subject

General Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3