The interaction of atoms and molecules with solid surfaces - X-The activation of adsorbed atoms by metallic electrons

Author:

Abstract

One object of this series of papers (Lennard-Jones and others 1935-7) is to consider in detail the mechanism of condensation, migration and evaporation of atoms and molecules at solid surfaces and to try to find the processes which govern the transition from one state to another. It has been shown that under certain conditions the thermal vibrations of a solid may activate an adsorbed atom from one vibrational state to a higher one or even eject it from the surface altogether. But the theory there developed is limited in the sense that it deals only with the transfer of single quanta to or from the solid, and consequently the quantized vibrational levels of the adsorbed atom must be closer together than the largest single quantum of energy which the solid can emit. An attempt has been made (Strachan 1937) to find the probability of the simultaneous emission or absorption of several quanta by the solid, and the indication is that the probability of several such simultaneous events is small. Now when atoms are bound to solid surfaces by valency forces, the vibrational levels are widely spaced compared with those of the solid, and many thermal quanta must be transferred simultaneously to the adsorbed atom to change its state of vibration. While this process may occur in nature, it seemed desirable to look for other possible processes whereby adsorbed atoms could be activated to higher vibrational states. One such possible mechanism, in metals at any rate, is by the transfer of energy from the conduction electrons. A simple calculation by classical methods indicates that in a typical case a surface atom may suffer as many as 10 15 collisions per second with the “free” electrons of a metal, and as, according to modern views, these electrons are moving with an energy of several volts, there is here an ample reservoir of energy from which adsorbed atoms may absorb energy or to which they can re-emit it, and thus change their vibrational state, or indeed, also their electronic state.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference16 articles.

1. Z . p hys;Chem. B,1933

2. Condon a n d Morse 1929 " Q u an tu m M echanics." M cGraw H ill B ook Co.

3. Fow ler 1929 " S ta tistic a l M echanics " 1st ed. Cam b. U niv. Press.

4. F ues 1926a A n n .P h ys. L p z. 81 281. - 19266 A n n . P hys. L p z. 80 367.

5. H ughes an d d u B ridge 1932 " P h o to electric P h en o m en a." M cGraw H ill Book Co.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3