An alternative to the rejection of observations

Author:

Abstract

1. It is widely felt that any method of rejecting observations with large deviations from the mean is open to some suspicion. Suppose that by some criterion, such as Peirce’s and Chauvenet’s, we decide to reject observations with deviations greater than 4 σ, where σ is the standard error, computed from the standard deviation by the usual rule; then we reject an observation deviating by 4·5 σ, and thereby alter the mean by about 4·5 σ/ n , where n is the number of observations, and at the same time we reduce the computed standard error. This may lead to the rejection of another observation deviating from the original mean by less than 4 σ, and if the process is repeated the mean may be shifted so much as to lead to doubt as to whether it is really sufficiently representative of the observations. In many cases, where we suspect that some abnormal cause has affected a fraction of the observations, there is a legitimate doubt as to whether it has affected a particular observation. Suppose that we have 50 observations. Then there is an even chance, according to the normal law, of a deviation exceeding 2·33 σ. But a deviation of 3 σ or more is not impossible, and if we make a mistake in rejecting it the mean of the remainder is not the most probable value. On the other hand, an observation deviating by only 2 σ may be affected by an abnormal cause of error, and then we should err in retaining it, even though no existing rule will instruct us to reject such an observation. It seems clear that the probability that a given observation has been affected by an abnormal cause of error is a continuous function of the deviation; it is never certain or impossible that it has been so affected, and a process that completely rejects certain observations, while retaining with full weight others with comparable deviations, possibly in the opposite direction, is unsatisfactory in principle.

Publisher

The Royal Society

Subject

General Medicine

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parameter estimation of Gaussian mixture models (GMM) with expectation maximization (EM) algorithm;INTERNATIONAL CONFERENCE OF MATHEMATICS AND MATHEMATICS EDUCATION (I-CMME) 2021;2022

2. A review on robust M-estimators for regression analysis;Computers & Chemical Engineering;2021-04

3. The contemporary strain rate field in Uruguay and surrounding region and possible implications for seismic hazard;Journal of South American Earth Sciences;2020-11

4. Slow Slip Event Detection in Cascadia Using Vertical Derivatives of Horizontal Stress Rates;Journal of Geophysical Research: Solid Earth;2019-05

5. Finite Mixture Models;Annual Review of Statistics and Its Application;2019-03-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3