Explosion waves and shock waves III-The initiation of detonation in mixtures of ethylene and oxygen and of carbon monoxide and oxygen

Author:

Payman William,Titman H.

Abstract

This series of papers has so far dealt mainly with non-maintained or partially maintained atmospheric shock waves, and only incidentally with the fully maintained "detonation" wave. It is generally accepted that the detonation wave in an explosive gas mixture is a shock wave produced by the rapid combustion of the mixture, sufficiently intense to cause almost instantaneous ignition of the gas through which it passes, and continuous maintained by the combustion thereby started. An account of some preliminary experiments, using the "wave-speed" camera to record the movement of the flame and of the invisible shock waves in front of the flame in gas mixtures prior to detonation, has already been given by one of us. Those experiments related mainly to hydrogen-oxygen and methane-oxygen mixtures whose aptitude to detonate may be regarded as moderate, for the continuation of the work, mixtures with oxygen have again been used, but a more readily detonating gas, ethylene, was chosen. Experiments were also made with carbon monoxide, because the flame usually requires a comparatively long run before detonation is established. These two gases have the advantage, not shared by hydrogen and methane, that their predetonation flames are sufficiently actinic for good records to be obtained by direct photography for comparison with corresponding "wave-speed" records. All gas mixtures used were saturated with water vapour.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deflagration-to-detonation transition in laser-ignited explosive gas contained in a smooth-wall tube;Combustion and Flame;2020-09

2. References;Lees' Loss Prevention in the Process Industries;2012

3. 110 years of experiments on shock tubes;Journal of Engineering Physics and Thermophysics;2010-11-25

4. References, Part 7;Lees' Loss Prevention in the Process Industries;2005

5. Detonation Waves in Gases;Combustion, Flames and Explosions of Gases;1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3